

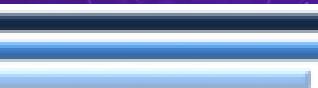
TECHNO-ECONOMIC CCUS MODELLING

for the Baltic Offshore Cross-Border Scenario Using Direct Injection from Ships

UPDATED

Ver.2.3 04.12.2025

<https://www.cts-cetp.net>


K.Shogenov¹, A.Shogenova¹, R.Beremblum², O.J.Ostvedt³,
P.Mesquita⁴, M.C.Usta¹

1-SHOGenergy Consulting company, NGO (Estonia); 2-NORCE Research (Norway);

3-Nemo Maritime (Norway); 4- University of Évora (Portugal)

Co-funded by
the European Union

KLIIMAMINISTERIUM

Funded by
Estonian Ministry of Climate

One
Subsea

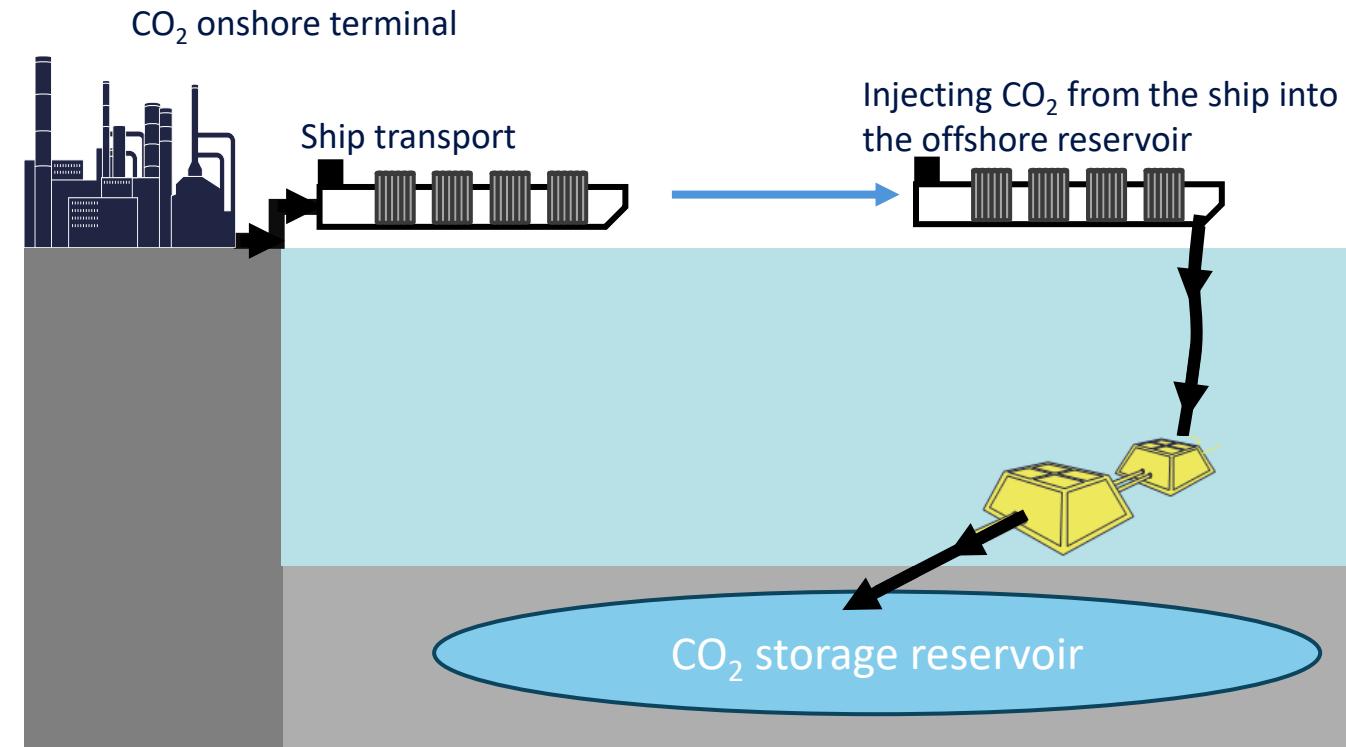
GAME-CHANGING CCUS TECHNOLOGY

Nemo Concept: One-step transportation solution with a ship equipped for direct injection

The CTS project assesses the feasibility of utilising ships for CO₂ transport and storage across various geographical regions, with a focus on developing flexible and cost-effective offshore storage solutions.

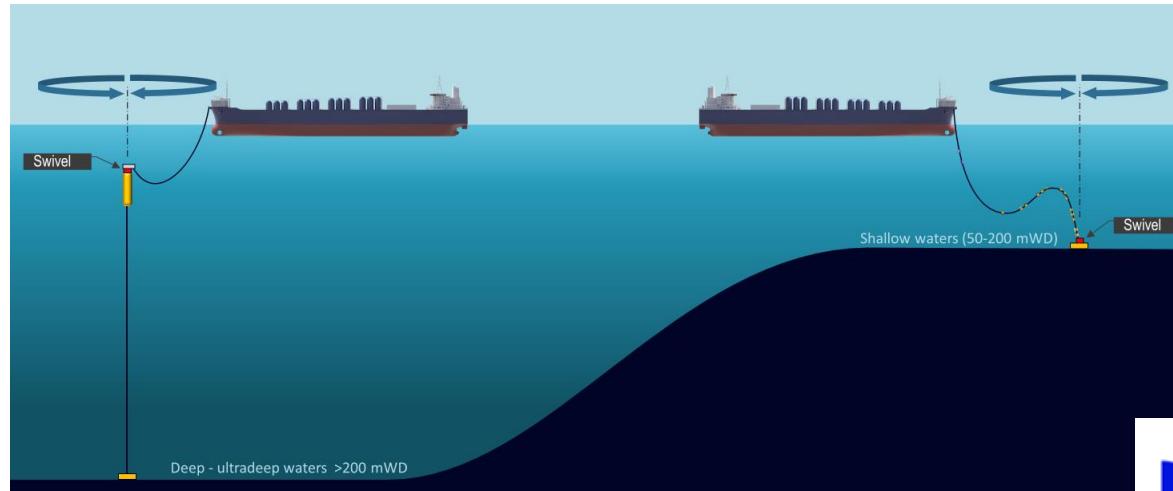
Advantages:

- ✓ Low-cost transportation solution
- ✓ Lower CAPEX expenditure than alternatives, making it ideal for initial phase developments and small to medium-scale applications
- ✓ Flexible and scalable capacity, adaptable to market needs
- ✓ Independent of location and water depth, the global application
- ✓ Very high regularity

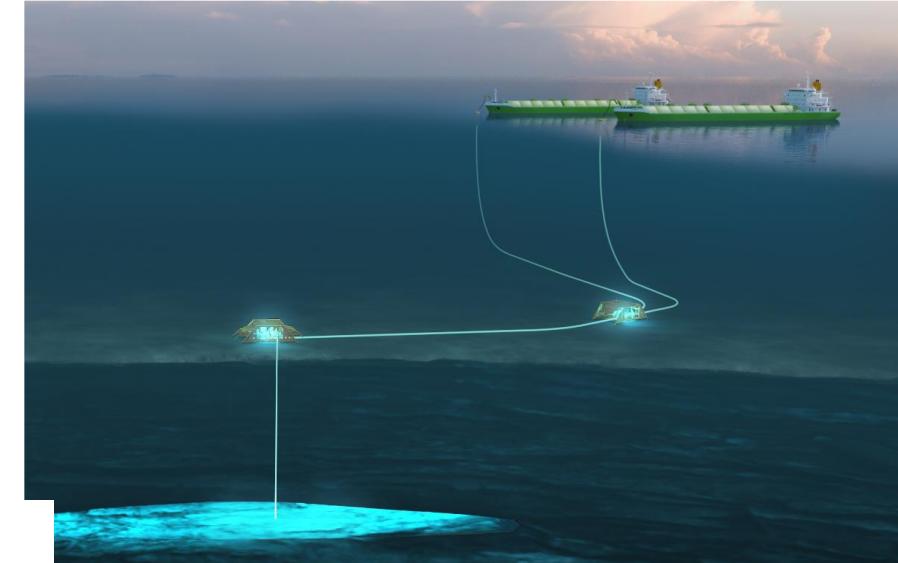


GAME-CHANGING CCUS TECHNOLOGY

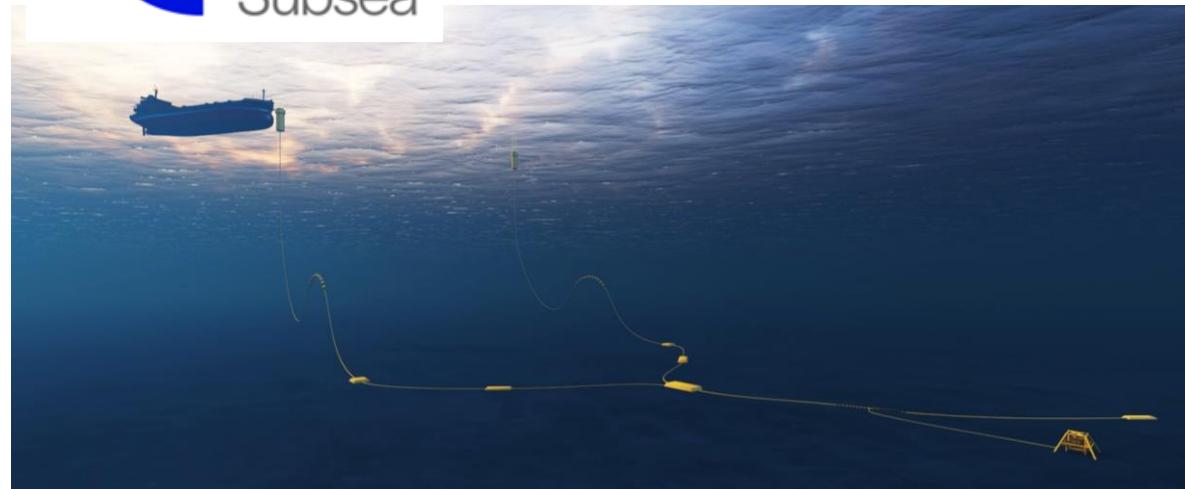
Nemo Technical Design Elements - Pilot


The Nemo concept

- ✓ Ship equipped for CO₂ transportation with onboard process unit for CO₂ conditioning and injection pumps
- ✓ Connection to an offloading system connected to an injection well
- ✓ On board well control
- ✓ CO₂ is stored onboard ships in large tanks
- ✓ Medium pressure (15 bar, -28°C)
- ✓ Transport capacity up to 100,000+ tons
- ✓ Yearly capacity 1–5 million tons CO₂
- ✓ Equipped with a CO₂ process unit
- ✓ Specially designed CO₂ pumps
- ✓ Flexibility on location and water depth
- ✓ Low investments, no intermediate storage or pipelines
- ✓ Fast-track start-up by 2028–2029
- ✓ Global application



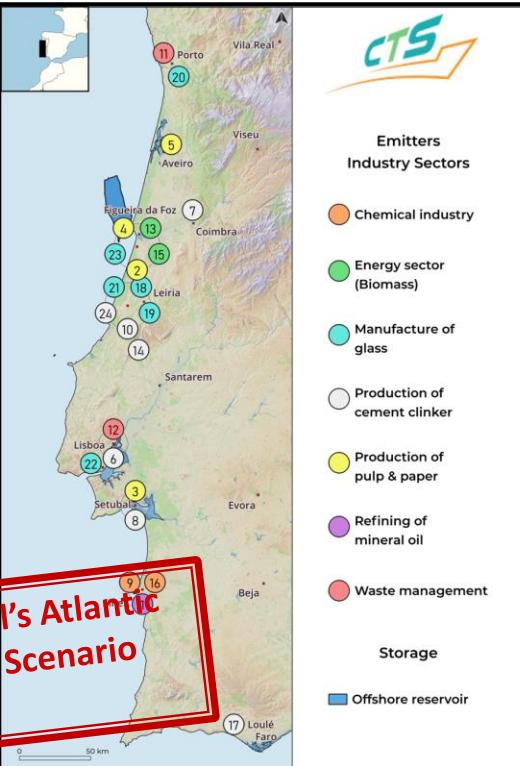
GAME-CHANGING CCUS TECHNOLOGY


Current project phase: Offloading system for direct injection

Submerged
Loading
System
Applications

Project partners :

Funding support:

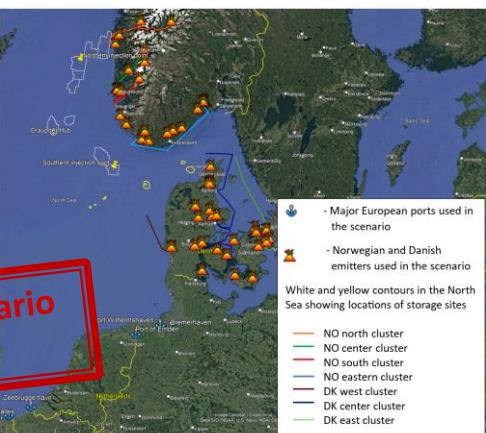


GAME-CHANGING CCUS TECH

Objective

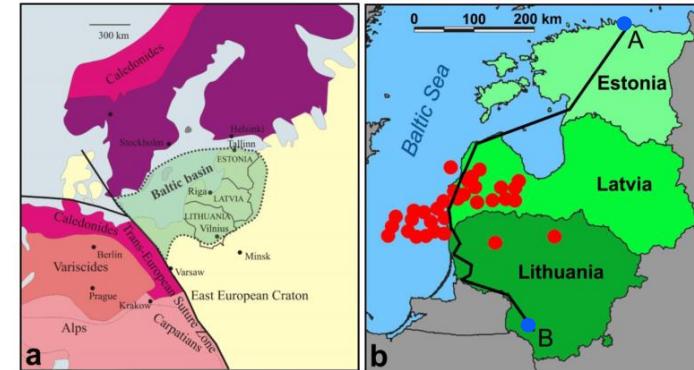
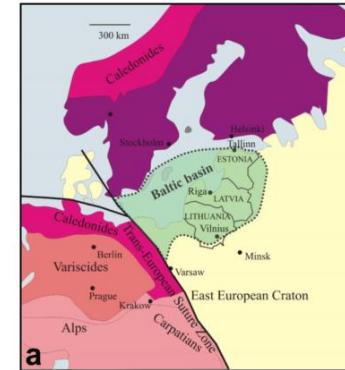
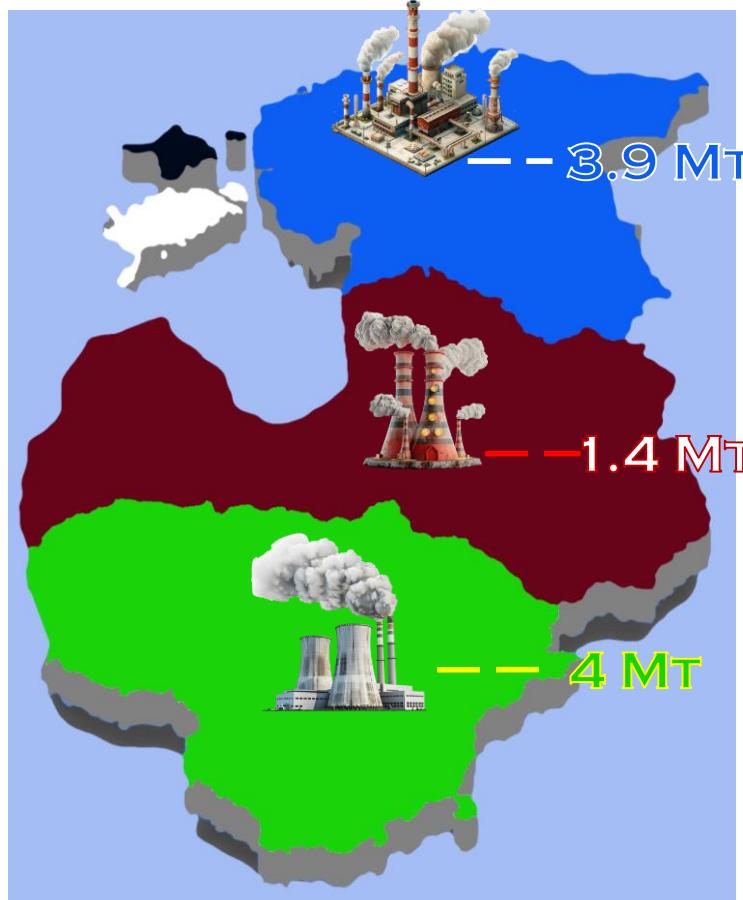
The primary objective of the CTS project is to thoroughly investigate the feasibility of utilising ships as injection vessels to store CO₂ (CGS) permanently. The CTS project will evaluate the new technology on CCS scenarios in four sea regions (North Sea, Baltic Sea, Black Sea and the Portuguese Atlantic Coast) and compare different scenarios


within one region using the CTS technology and traditional CCS methods (ships and pipelines)

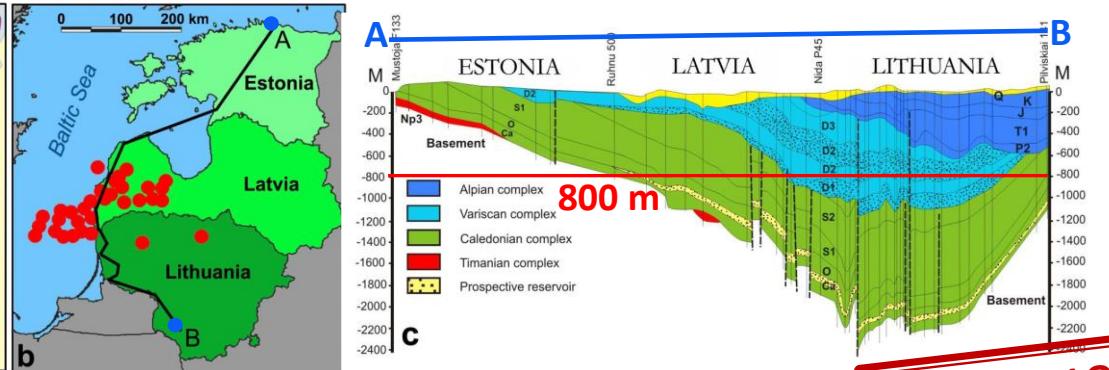

Portugal's Atlantic Coast Scenario

Baltic Cross-Border Scenario

Black Sea Scenario: Romanian part

North Sea Scenario


Black Sea Scenario: Ukrainian part

DIRECT INJECTION FROM A SHIP IN THE BALTIC SEA

9.3 Mt [2023]*

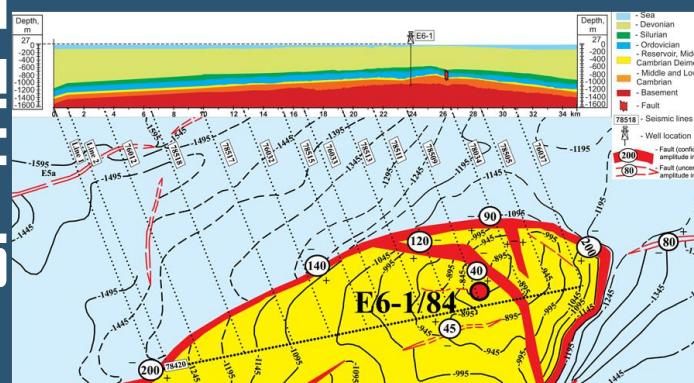
0.9 Mt
Bio-CO₂
EMISSIONS

ESTONIA
CO₂ storage

LATVIA
CO₂ storage

LITHUANIA
CO₂ storage

**NO GEOLOGICAL
CONDITIONS**

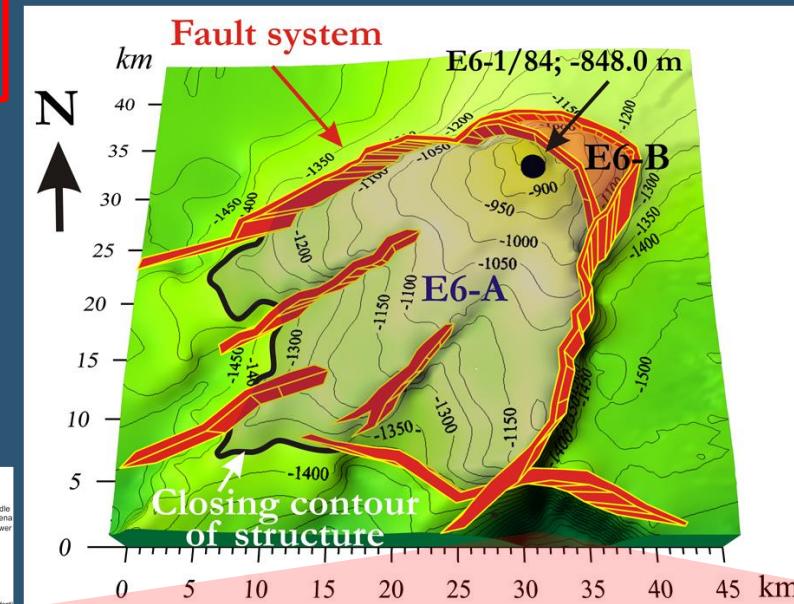

**CCUS is permitted on
9th October 2025**

BANNED

*Large emitters (>100 kt CO₂/y) were selected

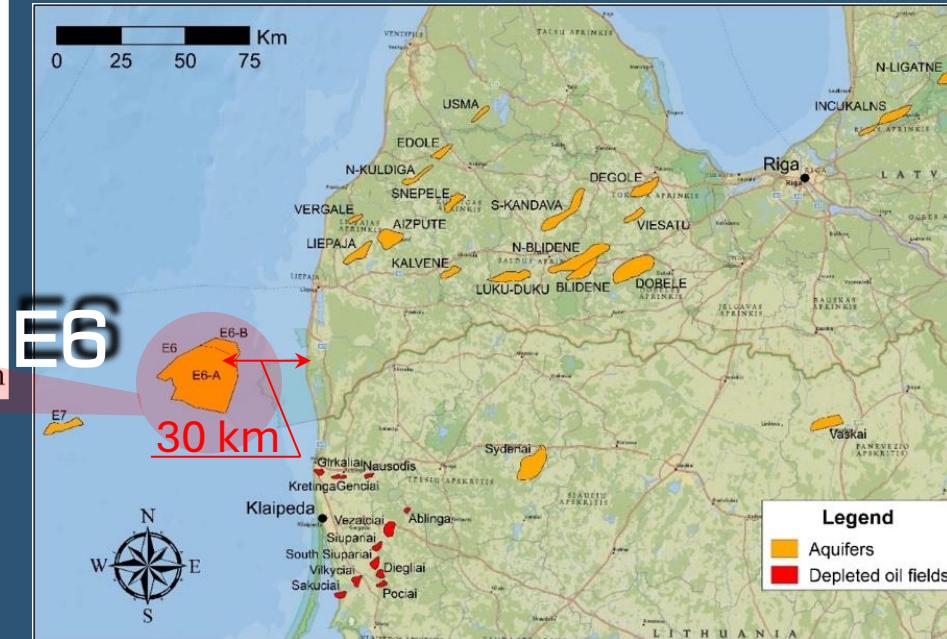
GEOLOGICAL BACKGROUND

SALDUS F. + DAIMENA F. CGS RESERVOIR	
E6	65-144 (mean 110)
E6-A	60-133 (mean 100)
E6-B	5-11 (mean 10)
E6	Optimistic: 251-602 (mean 377) Conservative: 101-243 (mean 152)
E6-A	Optimistic: 243-582 (mean 365) Conservative: 97-233 (mean 146)
E6-B	Optimistic: 8-20 (mean 12) Conservative: 4-10 (mean 6)
E6	Optimistic: 320-745 (mean 490) Conservative: 170-385 (mean 265)
E6-A	Optimistic: 305-715 (mean 470) Conservative: 160-365 (mean 250)
E6-B	Optimistic: 15-30 (mean 20) Conservative: 10-20 (mean 15)


Reservoir quality: 'good'
Application for CGS: 'appropriate'
(average porosity 21%;
permeability 170 mD)

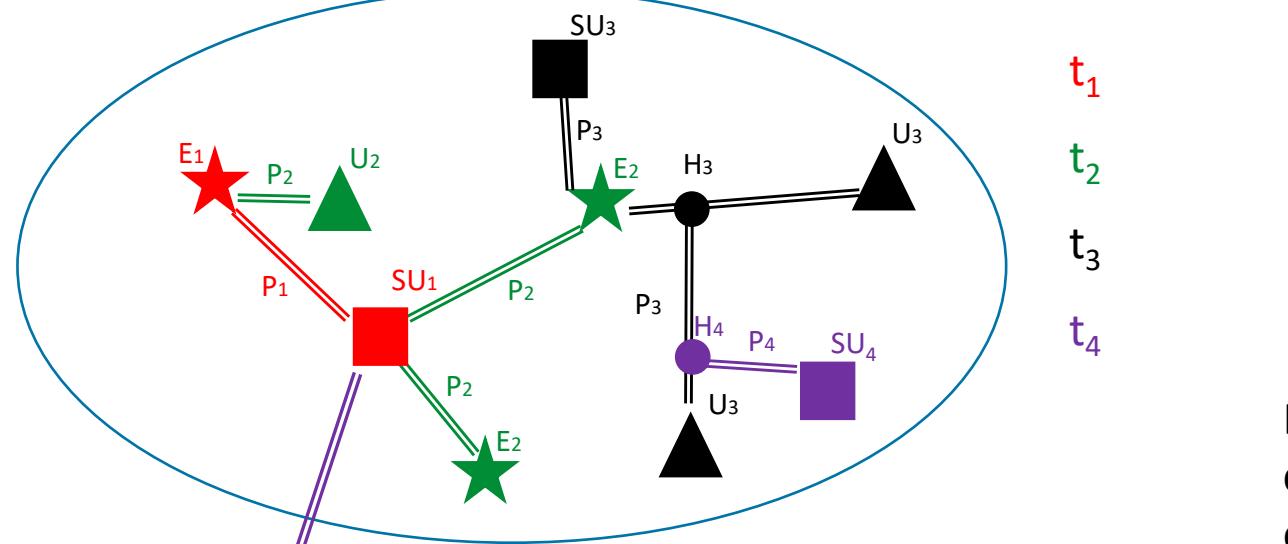
Shogenov et. al., 2013 a, b, 2015, 2022, 2023

System	Facies	Depth (m)	Thick. (m)
		-37.5	
Devonian		560.5	
		-580	
Silurian		122	
Ordovician	Saldus	-702	10.5
		-712.5	
Deimena		146	
Cambrian	Deimena	-848	53
		-901	
Proterozoic		117	
		-1018	
		-1068	50


References:

- Shogenov et. al, 2013a, b
- Shogenov et. al, 2015
- Shogenov et. al, 2016
- Shogenov & Shogenova, 2021
- Shogenov & Shogenova, 2023
- Shogenova et. al, 2023
- Shogenov & Shogenova, 2024

E6 PROPERTIES


Salinity: 99 g/l
Thickness: 53 m
Density of CO₂ in situ: 658 (kg/m³)
Net Gross ratio of aquifer: 0.90
Reservoir temperature in situ: 36°C
Reservoir pressure in situ: 9.3 mPa
Area E6: 600 (km²)
E6-A: 553 km²
E6-B: 47 km²
Porosity: 21 %
Permeability: 170 mD

SHOGENERGY
Consulting & Solutions for future energy sector
CO₂ and energy storage development research
SYNERGY CONCEPTS

TEA ASSESSMENT METHODOLOGY- STRATEGY CCUS TOOL

Region / Cluster

Transport to / from other regions?

★ E – Emitters / capture = H - Hub

△ U – Utilization

□ SU – Storage units

P – Transportation units

Output on Scenario Scale:

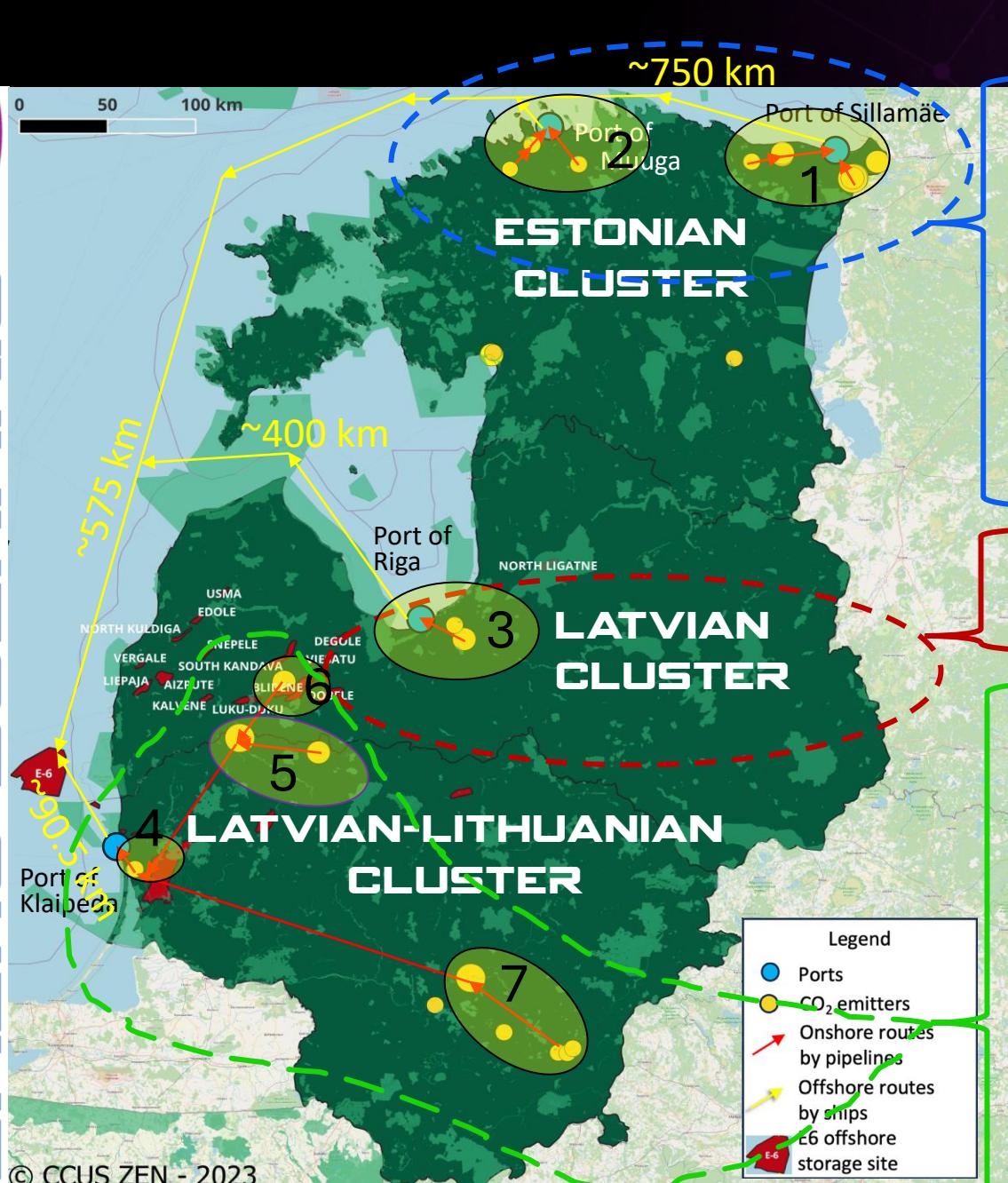
- Unit, type and total costs?
- How much is stored, used, leaked?
- Value created by downstream industries using CO₂ as a key input factor?
- How much energy is required, and what are the associated emissions?
- Etc.

Each unit (capture / transport/utilization/ storage) can be evaluated by the tool or integrated from external evaluations

Updated after [Nermoen et.al. 2022](#) “A Techno-Economic Analysis Tool for Regional CO₂ Capture, Transport, Use and Storage Scenarios”

METHODOLOGY AND ASSUMPTIONS

- We are estimating technical costs, contractual, operational and capital costs at a high level, based on the published estimates available and CO₂ emissions produced by plants in 2023
- No risk premiums
- **Total CO₂ emissions** – The **gross amount of CO₂ physically captured at the point of capture** (e.g., at the plant's capture unit) that is then handed off for transport and storage. This is the headline “tonnes captured” number (IPCC Report, 2005)
- **Operational/process emissions** associated with CCUS - The additional CO₂ (and other GHGs) emitted during the CCUS chain: energy used for capture (heat, electricity), emissions from compressors, transport (fuel for ships/trucks/pipelines), injection operations, and any fugitive/leakage during handling. These are emissions produced by the CCUS activity itself, not the original source emissions (ICAP Carbon Action, 2023)
- **CO₂ Emissions Avoided** - The amount of CO₂ that is prevented from entering the atmosphere thanks to the CCUS activity, relative to a defined baseline (what would have been emitted without the project).
- **CO₂ Emissions Abated** - The amount of **CO₂ Avoided, together with captured and stored Bio-CO₂**
- **Bio-CO₂** - refers to CO₂ originating from biomass. When bio-CO₂ is captured and permanently stored (e.g., BECCS), the resulting **Avoided bio-CO₂** contributes to **negative or very low net emissions**, because the CO₂ removed from the atmosphere via biomass is not released back into it.


Avoided CO₂ = Gross CO₂ captured at source – CCUS chain emissions (capture + transport + storage + technical losses during operations)

Abated CO₂ = Avoided CO₂ + Negative Bio-CO₂

Key consequence: Abated CO₂ (as well as **Avoided CO₂**) is normally lower than **gross CO₂ captured**. That is expected — capture systems and logistics consume energy and produce emissions, so the net **climate benefit** equals **captured** minus those **additional emissions**.

- Inflation is 4% per year, and the social discount rate is 5% per year
- Electricity price is 87 €/MWh

BALTIC SCENARIO

16 EMITTERS IN 3 BALTIC COUNTRIES LOCATED NEAR PORTS PRODUCED 9 376 441 T OF CO IN 2023

CO₂ SOURCES

Enefit Power AS	Enefit Power AS	VKG Oil AS	VKG Energia OÜ	Kiviõli Keemiatööstus e OÜ	Horizon Tselluloosi ja Paber AS	Utilitas Tallinna Elektrijaam OÜ	Enefit Power AS	Sia "Schwenk Latvija"	AS "Latvenergo"	AS "Latvenergo"	Ab "Achema"	UAB Gren Klaipėda	UAB Kauno kogeneracine jegaine	Ab "Orlen Lietuva"	Ab "Akmenės Cementas"
Auvere Power Plant	Auvere Shale Oil Plant	VKG Shale Oil Plant	VKG Energia North Thermal Power Plant	Kiviõli Chemical Plant	Horizon Paper Factory	Utilitas Tallinn Power Plant	Iru Waste to Energy Plant	Schwenk Latvia	Latvenergo Tec-2	Latvenergo Tec-1	Achema	Gren Klaipeda WtEP	UAB Kauno WtEP	Orlen Lietuva	Akmenės Cement

Capture starts in 2031 at Akmenės Cement and Schwenk Latvia, with the vast majority of emitters joining in 2035. Horizon Paper Factory, Iru Waste to Energy Plant, Gren Klaipeda WtEP, and UAB Kauno WtEP are expected to join in 2040.

Capture facilities are designed «oversized», allowing for capturing associated emissions with a high **efficiency of 95%**

The total Baltic Scenario captures **353 MtCO₂ (280 MtCO₂ abated)** over its operational period of **2031–2065**

Technical costs of capture per ton vary significantly from **55€** for waste incinerators, to **120–156 €** for some of the power-producing facilities.

Total (and discounted) capture costs for a ton of CO₂ are

CO ₂ captured, €/ton abated	Corrected for inflation	Discounted
Total	177	71
CAPEX	15	13
OPEX	162	58

CO₂ CAPTURE DETAILS

Unit name	Start Year	€/ton CO ₂ captured	Total CO ₂ captured, Mt	Capture Technology
Auvere Power Plant	2035	78,5	31	Co-generation post combustion
Auvere Shale oil	2035	112	39,4	Refinery post combustion
VKG Shale oil	2035	120	29,1	Refinery post combustion
VKG Energi North Terminal	2035	74	25	Coal post combustion
Kiviõli Chemical Plant	2035	156	9,4	Chemical
Horizon Paper Factory	2040	118	4,3	Pulp and paper
Utilitas Tallinn Power	2035	93	5,2	Co-generation
Iru waste to Energy	2040	54	4,9	Incinerator
Schwenk Latvia	2031	78	29,7	Cement post combustion capture
Latvenergo Tec-2	2035	75	18,1	Natural Gas PP
Latvenergo Tec-1	2035	93	5,1	Natural Gas PP
Achema	2035	124	47,4	Chemical
Gren Klaipeda WtEP	2040	57	3,2	Incinerator
UAB Kauno WtEP	2040	55	3,8	Incinerator
Orlen Lietuva	2035	90	66,5	Refinery
Akmenes Cement	2031	78	31,3	Cement post combustion capture

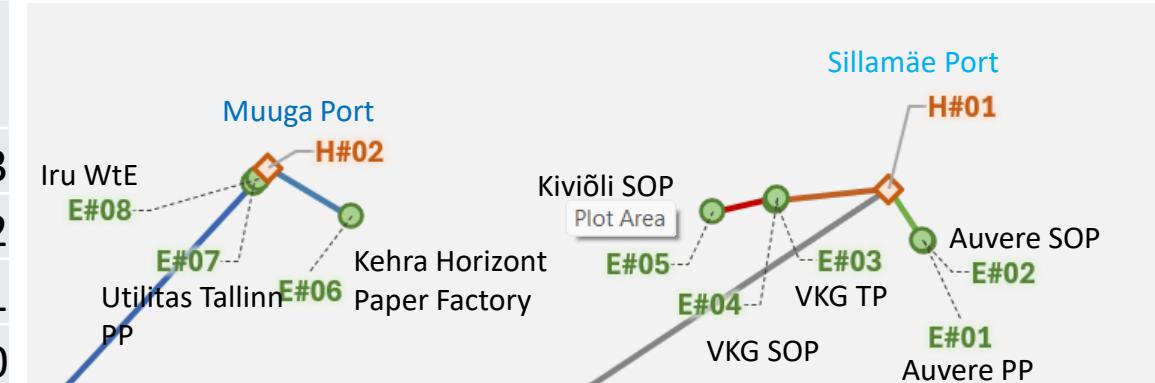
TRANSPORT

Transport consists of **16 pipelines** connecting emitters to **4 ports** (total length **730km**) and **4 shipping routes** (total length **1820km**).

Shipping routes can be further optimised:

ships from Sillamäe pass by Muuga port

The route from Klaipeda (being the shortest) is the least efficient


CO ₂ transported, €/ton abated	Corrected for inflation	Discounted
Total	58	25
CAPEX	8	7
OPEX	50	18

TRANSPORT

Estonian pipeline system

Connection ID	Start ID	End ID	Pipeline length (km)	Total cost (M€)
P01	E#01	E#02	1,3	4,3
P02	E#02	H#01	25,2	30,2
P03	E#05	E#04	19,8	8,1
P04	E#04	E#03	1	4,0
P05	E#03	H#01	37,3	40,4
P06	E#07	E#08	3,7	3,0
P07	E#06	H#02	32,7	10,8
P08	E#08	H#02	9,6	4,7

Total CAPEX for pipelines for the whole scenario: **416M€**

Total OPEX: **495M€**

Total costs for the whole scenario: **911M€**

Total costs for the Estonian scenario: **105.4M€**

Estonian clusters are app. **18% of the total length** and **11.6% of the total pipeline costs**

STORAGE

Traditional

Main costs (undiscounted) of storage are:

- Platform, drilling **8 wells**, baseline monitoring – app. **680 M€**
- Abandonment and post monitoring costs – app **75 M€**
- Well maintenance, operational, monitoring costs – **31 M€/year**
- Energy costs of app. **1.2 B€** - heating and injecting CO₂

CO ₂ stored, €/ton abated	Corrected for inflation	Discounted
Total	23.4	9.85
CAPEX	3.4	2.4
OPEX	20	7.45

OVERALL FOR BALTIC SCENARIO

Traditional

Strategy CCUS Region KPIs (Discounted)

Analysis of the CCS system (€/tCO₂ abated)

Total CCS value chain		106.2€
CCS value chain		
Total CAPEX		22.84€
Cost of Capture		13.4€
Cost of Transport		7€
Cost of Storage		2.4€
Total OPEX		83.3€
Cost of Capture		57.8€
Cost of Transport		18.1€
Cost of Storage		7.45€
Total CO₂ Captured		353Mt

Total cost of the project:
29.7 B€

SHOGENERGY
Consulting & Solutions for future energy sector
CCUS / H₂ / Energy storage / Geothermal energy recovery
SYNERGY CONCEPTS

Total CO₂ Captured, transported and stored (abated ~20% of captured) **280MT**

DIRECT SHIP INJECTION BENEFITS

- Flexibility in delivery and optimisation of routes will provide additional benefits
- Direct ships may be a way to reduce emission costs by being designed for less pure CO₂ (outside of the current project scope), and can utilise cleaner fuels or onboard capture systems
- No need for power production or electrification of the platform from onshore! While the energy requirement to heat and inject CO₂ is about the same, ship engines can be equipped with CO₂ capture or run on LNG/ammonia to reduce associated emissions of CO₂ from electricity production

DIRECT SHIP INJECTION COST ESTIMATE

Numbers are preliminary, and further optimisation is ongoing

The injection equipment and crew are ship-based, as are heating and injection energy usage, thereby significantly reducing storage CAPEX and OPEX.

Total undiscounted savings are around **4.7B€**, and discounted savings are **1.96B€**

Traditional scenario		
CO ₂ injected €/ton abated	Corrected for inflation	Discounted
Total	23.4	9.8
CAPEX	3.4	2.4
OPEX	20	7.4

VS

Direct ship injection		
CO ₂ injected €/ton abated	Corrected for inflation	Discounted
Total	6.7	2.8 (savings 70%)
CAPEX	1.9	1
OPEX	4.8	1.8

DIRECT SHIP TRANSPORT COST ESTIMATE

Traditional scenario	
CO ₂ transported, €/ton abated	Discounted
Total	25
OPEX	18
CAPEX	7

VS

Direct ship injection	
CO ₂ transported, €/ton abated	Discounted
Total	29 (additional costs 16%)
OPEX	21
CAPEX	8

DIRECT SHIP TRANSPORT + STORAGE COST ESTIMATE

Traditional scenario

CO ₂ transported and stored, €/ton abated	Discounted
Total	38
OPEX	23
CAPEX	15

vs

Direct ship injection

CO ₂ transported and stored, €/ton abated	Discounted
Total	35.5 (savings 6.5%)
OPEX	24.7
CAPEX	10.8

DIRECT SHIP INJECTION COST ESTIMATE

Assuming app. 25% of energy coming from recuperation and 600€/ton diesel cost

Traditional

Analysis of the CCS system (€/tCO₂ abated)

Total CCS value chain

CCS value chain **106.2€**

Total CAPEX

22.84€

Cost of Capture **13.4€**

Cost of Transport **7€**

Cost of Storage **2.4€**

Total OPEX

83.3€

Cost of Capture **57.8€**

Cost of Transport **18.1€**

Cost of Storage **7.45€**

Analysis of the CCS system (€/tCO₂ abated)

Total CCS value chain

Analysis of the CCS system (€/tCO₂ abated)

Total CCS value chain

103€ -3.2

Total CAPEX

22.79€ -0.05

Cost of Capture **13.4€**

Cost of Transport **8.4€** +1.4

Cost of Storage **1€** -1.4

Total OPEX

80.2€ -3.1

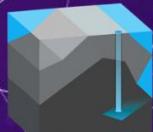
Cost of Capture **57.8€**

Cost of Transport **20.57€** +2.5

Cost of Storage **1.82€** -5.6

Change €

Total cost 28.8 B€

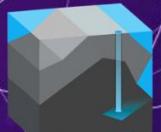

VS

Benefit 896 M€

Total CO₂ abated: 280Mt

CONCLUSIONS 1

- In total, about 353 Mt CO₂ from 16 plants in 3 clusters will be shipped from 4 ports, covering a **total distance of 2550 km**
- **Estonia:** 4.46 Mt/y from 5 plants in the Ida-Viru cluster via 84.6 km pipelines to NE Sillamäe Port, followed by a ship journey of 751 km to the E6. 0.58 Mt/y from 3 plants in the Tallinn-Harju cluster will go to the Muuga Port via 46 km pipelines and then 575 km by ship to the E6 structure
- **Latvia:** 0.77 Mt/y of CO₂ from 2 Latvenergo Natural Gas power plants will be conveyed 22.6 km pipelines to Riga and shipped 402 km to the E6 structure
- **Latvian-Lithuanian cluster:**
Two Schwenk cement plants will send 1.8 Mt/y of CO₂ starting from 2031, Achema and Orlen Lietuva 3.8 Mt/y of CO₂ from 2035 and two waste-to-energy plants (Lithuania) will send 0.28 Mt/y of CO₂ by pipelines to Klaipeda and then **90.5 km** by ship
In total, this cluster will transport 5.87 Mt/y of CO₂ from Klaipeda starting from 2040
- **Overall,** in total, 353 Mt CO₂ emissions captured, **transported and injected** into the underground geological structure **E6 in Latvia** at a depth exceeding 850 metres

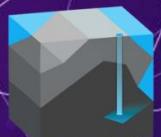

SHOG ENERGY

TAL-TECH
DEPARTMENT OF
GEOLOGY

CTS

CONCLUSIONS 2

- The total Baltic Scenario captures **353 Mt CO₂** over its operational period of **2031–2065**
- Total Baltic Scenario CO₂ abated is **280 Mt** over its operational period of **2031–2065**
- The technical costs of capture per ton vary significantly, from about **55€** for waste incineration plants, to **120–156€** for certain shale oil and chemical plants
- The total discounted capture cost per ton of CO₂ is estimated at **71€**
- The cost of one ton of CO₂ abated using:
 - traditional CCUS technologies: **106€/t CO₂ abated**
 - CTS technologies: **103€/t CO₂ abated**
- The total project cost amounts to:
 - **29.7 B€** when using traditional CCUS technologies
 - **28.8 B€** when using CTS technologies
- This results in a total benefit of approximately **900 M€**
- Furthermore, flexibility in delivery and optimisation of routes will provide additional benefits — not only financial ones (e.g. avoiding regulatory challenges with governments, environmental impacts, etc.)



SHOGENERGY

REFERENCES

- Nermoen, Anders and Berenblyum, Roman and Coussy, Paula and Guichet, Xavier and Canteli, Paula and Mesquita, Paulo and Carneiro, Julio and Khrulenko, Alexey and Rocha, Paulo Alexandre and Orio, Roberto Martínez, A Techno-Economic Analysis Tool for Regional CO₂ Capture, Transport, Use and Storage Scenarios (July 8, 2022). Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16) 23-24 Oct 2022, Available at SSRN: <https://ssrn.com/abstract=4271525> or <http://dx.doi.org/10.2139/ssrn.4271525>
- Shogenov K, Shogenova A, Vizika-Kavvadias O. Potential structures for CO₂ geological storage in the Baltic Sea: case study offshore Latvia. *Bulletin of the Geological Society of Finland* 2013a; 85(1):65–81.
- Shogenov K, Shogenova A, Vizika-Kavvadias O. Petrophysical properties and capacity of prospective structures for geological storage of CO₂ onshore and offshore Baltic. Elsevier, *Energy Procedia* 2013b; 37:5036–5045. DOI:10.1016/j.egypro.2013.06.417
- Shogenov K, Shogenova A, Vizika-Kavvadias O, Nauroy JF. Experimental modelling of CO₂-fluid-rock interaction: The evolution of the composition and properties of host rocks in the Baltic Region. *Earth and Space Science* 2015; 2:262–284
- Shogenov K, Gei D, Forlin E, Shogenova A. Petrophysical and numerical seismic modelling of CO₂ geological storage in the E6 structure, Baltic Sea, Offshore Latvia. *Petroleum Geoscience* 2016; 22:153–164.
- Shogenov, K.; Shogenova, A. (2021). Innovative synergy CCUS and renewable energy project offshore Baltic using CO₂ emissions from the cement industry. 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15, 15-18 March 2021, Abu Dhabi, UAE. Elsevier, 1–11. DOI: 10.2139/ssrn.3812387.
- Shogenov, K.; Shogenova, A.; Šliaupa, S. (2022). Underground Hydrogen Storage in the Baltic Countries: Future Outlook for Latvia and Estonia. 83rd EAGE Annual Conference & Exhibition: 83rd EAGE Annual Conference & Exhibition, Madrid, 6-9 June 2022. European Association of Geoscientists & Engineers, 1–5. DOI: 10.3997/2214-4609.202210772.
- Shogenov, Kazbulat; Shogenova, Alla (2023). New synergy concept of CO₂ and green hydrogen geological storage in the Baltic offshore structure. *Chemical Engineering Transactions*, 105, 133–138. DOI: 10.3303/CET23105023.
- Shogenova, Alla; Shogenov, Kazbulat; Šliaupa, Saulius; Šliaupiene, Rasa (2023). The Role of CCUS Clusters and Hubs in Reaching Carbon Neutrality: Case Study from the Baltic Sea Region. *Chemical Engineering Transactions*, 105, 169–174. DOI: 10.3303/CET23105029.
- Shogenova, A., Shogenov, K. (2024). Role of CO₂ Geological Storage in Reaching Climate Targets in the Baltic Sea Region: Technological Prospects and Regulatory Challenges. *Eesti Geoloogia Seltsi Bülettaän*, 24: Kliimast, geoloogiast, ringmajandusest ja ajaloost. Ed. Aaloe, A., Amon, L. & Hint, O. Tallinn: Eesti Geoloogia Selts, 28–31. (10).
- Alla Shogenova, Kazbulat Shogenov and Mustafa Cem Usta, Alexandra-Constanța Dudu, Roman Berenblyum, Ole Johan Østvedt, Hamid Nick, Vahid Mottezaeikia, Frederic Amour and Charlotte Nørgaard Larsen, Rasmus Havsteen, Paulo Mesquita, Pedro Mädureira and Júlio Carneiro, Yuliia Demchuk, Ivan Virshylo, Mariia Kurylo. (2024). Deliverable 2.1 of CETP CTS Project. Report on clusters created. 96 pp.

SHOG ENERGY

TAL
TECH
DEPARTMENT OF
GEOLOGY

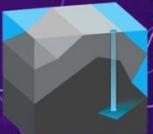
CTS

<https://www.cts-cetp.net>

THANK YOU FOR YOUR ATTENTION!

KLIIMAMINISTEERIUM

SUPPORTED BY THE ESTONIAN MINISTRY OF CLIMATE
WITHIN THE TARGET FUNDING AGREEMENT NR 4-1/23/201


This research was funded by CETPartnership, the Clean Energy Transition Partnership under the 2022 CETPartnership joint call for research proposals, co-funded by the European Commission (GA N°101069750) and with the funding organisations detailed on <https://cetpartnership.eu/funding-agencies-and-call-modules>

SOCIAL MEDIA

www.cts-cetp.net

SCAN ME

SHOGENERGY

TAL-TECH
DEPARTMENT OF
GEOLOGY

Contact:
GSM: +372 55 89 001
E-mail: kaybulat.shogenov@taltech.ee